Feiyu Blog

Back

使用conda创建一个名为GAN的虚拟环境,Python版本为3.7.12

conda create -n GAN python=3.7.12
shell

激活该虚拟环境

activate GAN
shell

安装依赖

pip install paddlepaddle==1.8.5 parl==1.4 gym==0.18.0 atari-py==0.2.6 rlschool==0.3.1 protobuf==3.19.6 metagym==0.1.1 matplotlib==3.3.4 numpy==1.19.5 scikit-learn==0.24.2 make_env==0.0.7 pyglet==1.5.0 mock==3.0.5 -i https://mirrors.aliyun.com/pypi/simple
shell

GPU CUDA10.1

pip install paddlepaddle-gpu==1.8.5.post107 parl==1.4 gym==0.18.0 atari-py==0.2.6 rlschool==0.3.1 protobuf==3.19.6 metagym==0.1.1 matplotlib==3.3.4 numpy==1.19.5 scikit-learn==0.24.2 make_env==0.0.7 pyglet==1.5.0 mock==3.0.5 -i https://mirrors.aliyun.com/pypi/simple
shell

GPU CUDA12.0 Latest

conda create -n test python=3.9
activate test

python -m pip install paddlepaddle-gpu==2.5.2.post120 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html
pip install numpy==1.23.5 parl==2.2.1 gym==0.26.2 pygame -i https://mirrors.aliyun.com/pypi/simple
shell

在Pycharm IDE中配置该虚拟环境,运行实例代码:

LiftSim_example.py

from rlschool import make_env

env = make_env('LiftSim')
observation = env.reset()
action = [2, 0, 4, 0, 7, 0, 10, 0]
for i in range(100):
    env.render()    # use render to show animation
    next_obs, reward, done, info = env.step(action)
python

可尝试进行训练:

xparl start --port 8010
python xxx/LiftSim_baseline/A2C/train.py
shell

参考链接:

电梯调度算法大赛_飞桨大赛-飞桨AI Studio星河社区

LiftSim_baseline - 飞桨AI Studio星河社区

开发环境配置
https://feiyu05.top/blog/smart-lift
Author Feiyu
Published at February 24, 2025
Comment seems to stuck. Try to refresh?✨